

*使用系统前请认真阅读本手册。

使用注意事项:

- 1. 包装箱打开后请检查系统在运输过程中有无破损,装箱单上所列内容与箱内物品是否符合。
- 2. 本说明书适用于微步公司生产的小型火焰等离子切割机数控系统。
- 3. 数控系统要求工作环境温度为 0℃ +40℃,相对湿度为 0-85%。在高温、高湿和有腐蚀性 气体的环境下工作,需要采取特殊的防护。
- 4. 数控系统各部分接线要正确, 地线接触良好。
- 5. 在高粉尘环境下,整机需要做粉尘防护,并且需要定期清理灰尘,尽量保证数控系统的清洁。
- 6. 数控系统应由专人管理, 对操作人员应进行培训。
- 7. 不允许将数控系统内部使用的交流/直流电源连接到其它电器上。
- 8. 请检查电网电压是否正确(AC220V ±15%)。在电网与系统之间要使用 AC380V-AC220V 的隔离变压器,以确保系统可靠工作和人员的安全。
- 9. 如遇问题,请与本公司联系。切勿在不熟悉的情况下自行拆装系统。

目录

第一章 系统概述	6
1.1 系统功能	6
1.2 系统特色	6
1.3 硬件技术指标	6
第二章 系统工作主菜单	7
第三章 自动功能	8
3.1 自动功能中的操作选择	8
3.2 自动加工中的功能选择	9
3.3 自动加工中的启动	10
3.4 自动加工中的控制和误差补偿	10
3.5 原轨迹回退加工	10
3.6 断点恢复和停电处理	11
3.7 选段功能	11
3.8 厚板外延穿孔	12
第四章 编辑功能	13
第五章 指 令系统	14
5.1 编程符号说明	14
5.2 坐标系统	14
5.3G(基本准备指令)	15
5.4M 功能	18
第二章 参数设置设明→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→	20
第六章 参数设置说明	20
第六章 参数设置说明 6.1 速度参数 6.2 系统参数	20 20 21
第六章 参数设置说明 6.1 速度参数 6.2 系统参数 6.3 火焰参数	20 20 21
 第六章 参数设置说明 6.1 速度参数 6.2 系统参数 6.3 火焰参数 6.4 等离子参 	20 20 21 21 22
第六章 参数设置说明 6.1 速度参数 6.2 系统参数 6.3 火焰参数 6.4 等离子参 6.5 控制参数	20 20 21 21 22 22 23
第六章 参数设置说明 6.1 速度参数 6.2 系统参数 6.3 火焰参数 6.4 等离子参 6.5 控制参数 6.5 控制参数	20 21 21 22 23
第六章 参数设置说明	20 20 21 21 22 22 23
 第六章 参数设置说明 6.1 速度参数 6.2 系统参数 6.3 火焰参数 6.4 等离子参 6.5 控制参数 第七章 系统诊断功能	20 20 21 21 22 23 24 24
 第六章 参数设置说明 6.1 速度参数 6.2 系统参数 6.3 火焰参数 6.4 等离子参 6.5 控制参数 第七章 系统诊断功能	20 20 21 21 22 23 24 24 24
 第六章 参数设置说明 6.1 速度参数 6.2 系统参数 6.3 火焰参数 6.4 等离子参 6.5 控制参数 第七章 系统诊断功能 第七章 系统诊断功能	20 21 21 22 22 23 24 24 24 24
第六章 参数设置说明 6.1 速度参数 6.2 系统参数	20 20 21 21 22 23 24 24 24 24 25
第六章 参数设置说明	20 20 21 21 22 23 24 24 24 25 25 25

第九	章 系统外部联接	-27
9.1	限位/启动/暂停信号输入	27

		9.2 外部输出接口27 9.3 输入输出端口定义	
附录	1	升级软件操作说明	30
附录	2	安装尺寸说明	31

第一章 系统功能概述

1.1 系统功能

SH-2002AH/ST 火焰/等离子数控切割系统,可控制机床做火焰或等离子切割(通过工艺选择进行设置,详见第五 章参数设置)。系统的操作显示,采用逐级功能窗口提示方式。在主窗口菜单下,调用某一功能后,系统将推出该功能 的子窗口菜单。根据屏幕窗口的提示,按【F1】至【F6】选择相应功能,按ESC 放弃选择退回上一级菜单。

1.2 系统特色

- ◆高可靠性能,具有防范等离子强干扰和雷击、浪涌等能力;
- ◆16-32M 超大用户程序存储容量,加工程序可达10000 条;
- ◆可自如完成中英文转换,可执行、显示、保存中文文件名;
- ◆丰富的软件功能,实用的火焰/等离子切割工艺,特别是小线段程序的处理,可广泛的应用于机加下料及广告、铁 艺等;
- ◆可扩充4 轴联动功能;
- ◆动态图形配合5.7 寸液晶显示,恰到好处;
- ◆采用U 盘读取程序和及时软件升级

1.3 硬件技术指标

- 1. 采用工业级ARM7 处理器芯片;
- 2. 系统提供,外带中间继电器4 个,分别是:
- 1) 燃气和预热氧或调高控制;
- 2) 切割氧或等离子起弧;
- 3) 割枪升;
- 4) 割枪降;
- 3. 系统提供:7 路输入(光电隔离) 路输出(继电器输出)、4;
- 4. 联动轴数:2轴,可以扩展为4轴;
- 5. 脉冲当量: 电子齿轮分子/分母设置范围, <1-65536>/<1-65536>;
- 6. 最高速度: 当脉冲当量=1 µ时, 速度6 米/分;
- 7. 用户程序空间: 16-32M;
- 8. 机箱尺寸: 300*200*85 (mm);
- 9. 工作温度0℃ 40℃,储存温度-40℃-60℃。

火焰数控系统操作说明书

第二章 系统工作主菜单

图 2.1 系统开机主画面

- 【F1】自动: 自动加工程序与与手动调整切割机床位置;
- 【F2】编辑:编辑/修改/输入/输出加工程序;
- 【F3】参数:系统参数设置;
- 【F4】诊断:检查机床输入输出信息;
- 【F5】图库:标准图形的设置和排料;
- 【INS】屏幕加亮: 连续按此键, 使屏幕背光增亮;
- 【DEL】屏幕转暗:连续按此键,使屏幕背光转暗。
- 【G】【G】【3】初设: 出如下对话框

文件格式化	
参数初始化	
ENGLISH	

图 2.2 初设对话框

其中: 文件格式化 ---格式化用户程序空间;

- 参数初始化 ---恢复出厂的参数设置;
- ENGLISH --- 转换成英文画面。

第三章 自动功能

图 3.1 自动功能主菜单

自动功能主菜单上显示的内容说明见上【图3.1】。

3.1 自动功能中的操作选择

【X】坐标设置, 输入X / Y轴坐标;

【G】手动连续/断续选择,选择手动连续时(高亮显示)按方向键调整割枪位置时,按一下走,再 按一下停止;若需要两个轴同时走,可按下另一个轴的方向健,两轴同时运动。此时按下任意方 向键都会使割枪另一个轴停下,而当前的轴继续行走,直到再按下本方向键,运动才会停止。按 【暂停】也会使运动停止;

不选手动连续时,按下方向键时走,抬起停;

- 【1】 图形放大,按一次图形放大1倍,可连续按3次,图形放大最大8倍;
- 【2】 图形复原,恢复到标准尺寸;
- 【F】快速调速, 按此键速度倍率在 5%与 80%两者转化;
- 【F+】【F-】加 / 减速调整,调整速度倍率值;

【点火】强电控制键,点火功能参见M20

【预热氧】强电控制键,打开预热氧电磁阀,具体M24

【乙炔开】强电控制键,打开乙炔(燃气)电磁阀,具体M10

【切割氧】强电控制键,打开切割氧电磁阀,具体M12;

【穿孔】强电控制键,完成一个穿孔的过程,具体操作如下:

火焰加工时 — 首先割枪上升(M72),开切割氧(M12),割枪下降(M73);

等离子加工时一 执行M07 指令;

[技巧] 这是一个非常重要的功能,在以后的暂停,回退,外延穿孔中反复使用,当预热结束后,

直接按【穿孔】键,会使穿孔启动一气呵成。

【总关】强电控制键,关闭所有的强电输出;

【S↑】强电控制键,按下割枪上升,抬起停止;

【S↓】强电控制键,按下割枪下降,抬起停止;

【↑】【↓】【←】【→】方向控制键。

3. 2 自动加工中的功能选择

【F1】点动,选择点动功能(高亮显示)系统提示输入

点动增量: 0030.000 (缺省是上次的输入值)

在点动模式下,按一次方向键,割枪运行一个点动增量值;

【F2】选段,指定系统从程序任意段(或穿孔点)启动加工。常用在需要从程序的某一段开始加工,

或只加工其中的一部份时使用。具体参见 3.7 选段功能;

【F3】空行(空运行),选择空运行功能后,系统运行时,正常行走,但不执行外部强电操作;

【F4】图形功能,用于检测程序是否有误。选择此功能,系统显示加工程序的图形,图形中点有十字

光标。按【1】键放大一倍图形(最多三次,放大8倍),按【2】键图形复原,按【↑】【↓】 【←】【→】可移动图形的显示位置;

【F5】断点恢复,选择该功能,按【启动】键,开始执行断点恢复功能,具体参见3.6断电恢复,断点恢复功能;

【F6】辅助功能,进入下一级菜单。如下图 3.2

图 3.2 辅助功能菜单

- 【F1】设置割缝补偿宽度,按此键提示输入割缝补偿宽度,如果不补偿(通常在套料软件中补偿) 可输入0;
 - 、【F2】返回参考点,按此键机床快速返回参考点(G92指定的位置,通常是0,0点);
- ② 【F3】缩放功能,按此键系统提示输入缩放比例,系统执行程序时将按此比例放大或缩小,此功
 ③ 能用在工艺美术字的切割上很有用;
 - 能用住工乙类水子的切割工很有用; 【F4】旋转功能,由于加工的钢板不可能一次就吊装很正,或因其他原因,需要旋转一个角度加、工时,可选此功能。按【F4】键进入下一级菜单:
- ④ 上时,可远此功能。按【F4】键进八下一级采单

火焰数控系统操作说明书

图 3.3 旋转功能

按【F1】键提示直接输入角度。确认后,系统会把现加工的程序按照指定角度旋转加工。注意:角度 以逆时针为正。还可通过测量一条直线的起点与终点让系统自动识别,计算旋转角度,方法如下:

首先确定基准线,一般可取钢板的一条边线做基线;移动割枪到基线上后,按【F2】设置测 位起点。控制割枪延基线行走到"终点"(起点与终点越远越准确),割枪对准基线,按【F3】 设置测位终点。这时相对基准线的旋转角度就被系统自动计算出来。完成旋转功能,旋转角度即 显示在信息显示栏中。

⑤ 【F5】镜象功能,连续按【F5】键可分别选择X镜象、Y镜象、不镜象。选X镜象时,加工程序沿X 轴对称方向执行,看起来象上下翻了个;选Y镜象时,加工程序沿Y轴对称方向执行,看起来象左 右翻了个;不镜象则正常执行,缺省为不镜象方式;

⑥ 【F6】键MDI功能暂时无此功能,留后续升级时使用。

3.3 自动加工的启动

在自动加工前,要选择正确的加工程序,选择合适的加工速率(倍率),在一切准备工作就绪后,有 两种方法都可以启动自动加工程序的执行。

1. 按【启动】键

2. 按外接"启动"按钮(见8.3章"输入输出端口定义")

3.4 自动加工中的控制和误差补偿

自动加工开始后,只有以下按键操作有效。

1. 【暂停】: 按下此键,系统运动减速停止,关闭切割氧(等离子加工时,关闭起弧开关),关闭调高 控制器(M39),保持当前显示画面。如果按下【启动】键,系统继续运行。在暂停状态,如果发现加 工尺寸有偏差,或想改变加工的位置,可直接按【↑】【↓】【←】【→】调整割枪的位置(此时系 统倍率自动为 5%),系统对割枪此时的移动视为补偿,调整到位后,按【启动】键,系统忽略补偿移 动,按调整前的坐标继续加工。如果按【退出】键系统返回主画面。

2. 【F↑】【F↓】运动轴调速键: 增加或减少进给速度倍率 。、

- 3. 【Pgup/S↑】、【Pgdn/S↓】控制割枪上升和下降,按住相应的键,割枪上升或下降,抬手割枪运动停止。
- 【急停键】:急停键为外接按键(见 6.1 章"外部输入接口"),信号从输入端口接入。急停有效时,全部运动停止。

3.5 原轨迹回退加工

加工中因未割透需原轨迹回退时,可按如下处理:

1. 按【暂停】键,使正在运行的系统降速停,系统显示 "暂停 "标记,并提示 F5 回退 F6前进。 按【F5】系统执行原轨迹回退,按【F6】在回退的基础上,原轨迹前进。在回退的过程中,如果 达到了需回退的位置,可再按【暂停】键,重复上述过程,再选择是继续回退,还是前进;

- 2. 在回退过程中,遇 G00(到达一个穿孔点)系统暂停,操作者可继续选择是继续回退,还是前进;
 3. 回退到指定位置后,就可以按相应的强电功能键(如预热穿孔,开切割氧等操作)。通常的做法是, 待预热好了,再按【穿孔】键,在火焰的情况下,割枪升,开切割氧,割枪降,系统继续运行。在 等离子情况下,引弧开,待引弧结束后,系统继续运行。
- 4. 以上操作可反复进行,直到取得预期效果为止。
- 5. 在暂停时按【ESC】,系统退出加工状态。
- 6. 回退的程序段,最多在 300 行以内,如果是断点恢复,或选段加工,则回退的起始行就是当前的断 点或选段行。

3.6 断点恢复和停电恢复处理

- 断点恢复——在系统人为暂停时,系统会自动保存当前割嘴位置为一个断点。这个断点会永久保存, 不论关机与否。在自动方式下时,只要当前程序没有变化,可按【F5】选择断点恢复功能,再按【启 动】键,系统开始断点恢复,当找到断点后,系统会出现以下三种选择(对话框):
 - 1) 原路返回——以 G00 的速度返回到断点,常用在因通割嘴设置的断点:
 - 2) 切割返回——断点恢复时可稍稍离开点断点,有点象外缘穿孔,使断点更光滑;
 - 3) 当前位穿孔——操作同前, 也可用于转移切割用.
 - 此时可按相应的强电功能键(如点火,预热穿孔,开切割氧等操作),建议:预热后,再按【穿

孔】键,则系统从断点位置开始继续加工。

当找到断点后,按【ESC】,系统退出加工状态。

 注意:不论是断点恢复还是断电恢复,都不得改变当前的加工程序,旋转角度,缩放比例(这些条件 系统会自动保存,不受开关机影响)。否则系统可能找不到断点。

3.7 选段功能

选段功能指定系统从程序任意段(或穿孔点)启动加工。按【F2】选择选段功能,系统进入选段下

一级菜单

图 3.4 选段功能菜单

【F2】穿孔 -- 按穿孔点序号来选择加工起点; 根据选择,系统提示输入选择的顺序号。

选择选段加工一般有两种情况:

1) 将程序中的某一个部件重新加工一遍;

2) 从程序中某一段开始将以后的程序重新加工一遍。

对于前者,通常是找块废料,对准穿孔点直接加工(选,按当前位置穿孔);而对于后者,则定位从参考点开始(选,按参考点位置)。针对这两种选择,系统在启动后提示:

按前位置穿孔 按参考占位署	
拟穸丐点世且	

图 3.5 选择选段加工,加工启动后,系统提示选择对话框 如果选择"按前位置穿孔",系统运行后,首先画全图,并在要穿孔的位置上,画一个大的十字 光标,操纵者可按【1】放大图形,以观察是否为需要的穿孔位置,若不满意,可按【ESC】退出加工 状态,重新选取。如果是要求的穿孔点,可通过强电控制开关,点火,预热,按【穿孔】键启动运行; 如果选择"按参考点位置",启动前,操作者应先将割枪对准参考点。启动后,系统控制割枪走 到穿孔点,其余操作如上。

此时: 【F1】行号 -- 按程序行号来选择加工起点;

3.8 厚板的边缘穿孔

自动加工中,对厚板加工时需要使用边缘穿孔法。边延穿孔的方法是:在穿孔前将割枪移动到钢板最近的边缘,开始预热,当预热结束后,按【穿孔】键(或【后动】键),割枪沿直线距离和选定的切割速 度切割到穿孔点,再继续切割加工。

采用延伸穿孔时,首先将参数中控制菜单中的边缘穿孔选择改写成1(表示选择有效)。这样每到穿 孔时,首先系统提示:

图 3.6 选择边缘穿孔,到穿孔点后,系统提示选择对话框

1 选当前位置穿孔---系统原位置穿孔,常用在内孔上;

2 选边缘穿孔 ---- 操作者可按【↑】【↓】【→】【→】调整割枪的位置到钢板的外沿(此时速度倍率自动为5%),开始预热,当预热结束后,按【穿孔】键(或【启动】键),割枪沿直线距离和选定的切割速度切割到穿孔点,再继续切割加工。
 3 选不穿孔 --- 系统从当前穿孔位置直接运行。

第四章 编辑功能

在系统工作主菜单下按【F2】键进入编辑菜单界面,如下图

000: 001: 002: 003: 004: 005:
001: 002: 003: 004: 005:
001: 002: 003: 004: 005:
002: 003: 004: 005:
002: 003: 004: 005:
003: 004: 005:
004: 005:
004: 005: 006:
005:
005
0.075+
000
007-
XXA.
008:
0.09-
010:
011
With the
新建 调入 存储 删除 删行 传输

- 图4.1 编辑功能菜单
- 1) 【F1】新建一新程序,清除加工程序编辑区,并开始编辑一个新的加工程序。
- 2) 【F2】调入程序,选择调入用户程序区内的程序,系统将现有程序名,以列表方式显示,并将光标停 留在当前程序名上。移动光标键可选择不同程序。按回车后,将选中程序调入加工程序编辑区,如果 按ESC键则放弃调入功能。
- 3) 【F3】存储程序,编辑完程序进行存储时,系统提示:
- 输入程序名: 0000.TXT 系统显示的是当前程序名,可以进行修改。如果按回车键,将编辑区的程序,以选中的名字存入程序 区,如果按ESC键则放弃存储程序。注意:程序名加扩展名不得超过12个字符。
- 4) 【F4】删除程序,选择删除用户程序区内的程序。
- 5) 【F5】删行,程序编辑中删除整行,提高编辑速度。
- 6) 【F6】传输程序,本系统支持U盘传送程序。按下【F6】键后进入下一级菜单

图4.2 U 盘超操作菜单

- 按【F1】输入将U盘程序传输到系统加工程序区;
- 按【F2】输出后将系统加工程序区中程序输出到U盘。

第五章 指令系统

5.1 编程符号说明

数控加工每一步动作,都是按规定程序进行的,每一个加工程序由若干条指令段组成,每一个指 令段又由若干功能字组成,每个功能字必须由字母开头,后跟参数值。

功能字定义:

Ν	指令段序号
G	准备功能
М	辅助功能
S	主轴功能
L	循环次数,延时时间
Х	X 轴(直径)绝对坐标
Y	Y 轴绝对坐标
U	X 轴相对于当前位置的增量
V	Y 轴相对于当前位置的增量
Ι	圆弧加工时,圆心坐标值减 X 轴起点值
J	圆弧加工时,圆心坐标值减 Y 轴起点值
R	圆弧半径指定
F	加工速度指定,用于 G01、G02、G03

注意 1: 在下面说明中, 有如下约定:

X[U]n -- 表示可以是 X 或 U, n 表示一个数值,但只能出现一种。同理, Y[V]n -- 表示可以是 Y 或 V, n 表示一个数值,也只能出现一种。 PPn-- 表示可以是任意轴组合,最少含一个轴,也可含两个轴内容。

注意 2: 指令执行顺序为,在程序中上一条程序的执行先于下一条;在同一条程序内 M, S, T 指令先于 G 指令执行。

5.2 坐标系统

本系统采用标准坐标系统,即右手笛卡尔坐标系统,如下图:

5.3 G (基本准备指令)

1) G92 参考点设置

设定程序运行时,加工起点(参考点)的坐标值,必须放在程序开头,并用绝对坐标设定。

格式: G92 Xn Yn

如果G92 后不跟X, Y 内容,则以当前X, Y 坐标为参考点。一般在使用机床原点定位时, G92 后不跟X, Z 内容。

2) G90/G91

绝对坐标系 G90(缺省时)/相对坐标系 G91;
使用 G90时, X, Y 表示的是坐标值, U, V 表示相对当前点的相对量;使用 G91时, X, Y 和 U, V 表示的都是相对当前点的相对量
格式: G90
格式: G91
例 1: G92 X0 Y0

G91// 相对坐标系
G00 X100 Y100// 快速定位到(100, 100),相当 G00 U100 V100
G01 X500 Y100// 直线加工到(600, 200)位置,相当 G01 U500 V100

例 2: G92 X0 Y0

G90// 绝对坐标系,可缺省
G00 X100 Y100// 快速定位到(100, 100)
G01 X600 Y200// 直线加工到(600, 200)

3) G20/G21 英制/公制说明
G20 英制说明, G20 以后的 X, Y, I, J, R, U, V, H, F, 均为英制单位;
G21 公制说明(缺省) G21 以后的 X, Y, I, J, R, U, V, H, F, 均为公制单位;
格式: G20
格式: G21

4) G00 点位运动

本指令可实现快速进给到指定位置。当二个轴都有位移时,系统用最高限速乘倍率从起点到终点直线运动。G00 运动时,受速度倍率的影响。

5) G01 直线切削

本指令可实现刀具直线进给到指定位置,作为切削加工运动指令,可单轴或两轴直线插补运动。进给 速度可以由 F 命令指定。

格式: G01 X[U]n Z[W]n [Fn] 或G01 PPn [Fn]

6) G02/G03 圆弧切削

本指令用于圆弧插补,指令分为顺圆弧 G02(逆时针),逆圆弧 G03(顺时针)。顺逆的方向的设定见 下图:

X[U]n Y[V]n In Jn [Fn] 或: G02[03] X[U]n Y[V]n Rn [Fn] 格式: G02[03]

或: G02[03]PPn In Kn [Fn] G02[03] PPn Rn [Fn] ı 例(G02): G92 X0 Y0 ŧΥ₽ G00 X40 Y50 G02+ G02 X160 V0 I60 J20 G28 0 70+ M02 例(G03): 507 G03+ G92 X0 Y0 G00 X40 Y50 G03 X160 V0 I60 J20 +X+ 0+ +40+ +100+ +160+ (或 G03 X160 V0 R63.25)

G28 M02

说明:

I, J为X, Y 轴方向圆心相对起点的增量值(圆心减起点)。

R 为圆的半径 (R 为正值, 当圆弧≤180°时可使用 R 来表述半径) 若指定 I, J则不用 R, 若用 R, 则不用 I, J。

7)G04 暂停 / 延时指令

本指令用于设置时间延时,当程序执行到本指令时,程序按 L 定的时间延时,时间单位为秒。

格式: G04 Ln

举例: G04 L2.4 (延时 2.4 秒) 在执行 G04 期间,按【启动】键则终止延时,继续执行 G04 以后的程序,按【退出】键则终止当前程序 的执行。

8) G26,G27,G28 返回参考点

本指令可实现刀具自动返回参考点。

格3%X 轴返回到参考点
G27Y 轴返回到参考点
G28X,Y 轴同时返回到参考点
举例:G28 (X,Y 轴同时返回到参考点,相当于走 G00)

9) G22/G80 循环语句

本指令可用于执行程序循环, G22 为循环体的开始,并指定循环次数 L 。G80 做为循环体结束标志,本指令可以嵌套循环, 但不能超过 5 层。G22 与向下数最近的 G80 构成一个循环体。

格式:		G22	Ln_	(L 指定循	环次数)
		循环 G80	体	(循环(本结束标志)
举例:	N000	G92	X100 Y100		
	N001	G00	X60 Y80		
	N002	G22	L5	-	第一层循环开始。
	N003	G00	V50 U-25		
	N004	G22	L5	-	第二层循环开始
	N005	G01	U5 V-10		
	N006	G80		-	第二层循环结束。
	N007	G80		-	第一层循环结束。
	N008	G28			
	N009	M02			

火焰数控系统操作说明书

5.4 M 功能

M00	程序暂停指令,执行后程序暂停,按【启动】键后继续执行
M02	程序结束指令,执行后程序处于等待状态
M30	同 M02
M10/M11	燃气(乙炔)阀开关,M10(开),M11(关)
M12/M13	
M14/M15	切刮氧阀开大,M12(开),M13(大)
M16/M17	割枪升开关,M14(开),M15(关)
M24/M25	割枪降开关,M16(开),M17(关)
M20/M21	备用开关,M24(开),M25(关)
M07	点火开关,M20(开),M21(关)
M08	空孔固定循环
	关切割固定循环

火焰切割操作顺序如下:

1. 如果燃气(乙炔)阀未开,则开燃气(乙炔)点火;

2. 割枪下降(割枪降延时,见M71);

3. 开预热氧阀,开始预热延时,如果预热时间不够,可按【暂停】键,预热延时自动延长为 150 秒,如果预热已好,可按【启动】键,结束预热延时,并将预热时间自动保存在预热 延时参数中;

- 4. 割枪上升(穿孔割枪升延时, M72);
- 5. 开切割氧阀(M12),延时穿孔延时时间,后割枪下降(穿孔割枪降延时 M73);
- 6. 打开调高器(M38),开始运行以后的程序。

等离子切割操作顺序如下:

1. 割枪下降(割枪降延时,见M71);

2. 如果选择穿孔定位(见参数设置)有效,则割枪下降,直到撞下限位开关,下降停;割枪上升,延时穿 **3.定位延时后,割枪停**;

- 3. 打开引弧开关;
- 检测"弧压成功"信号,若在参数设置中弧压检测选择取 0(不检测)则不测弧压,延时 0.5 秒;
- 5. 开调高器(M38),开始运行以后的程序

M08 关切割固定循环

火焰切割操作顺序如下:

- 1. 关切割氧(M13);
- 2. 关闭调高器(M39);
- 3. 割枪上升(M70);

等离子切割操作顺序如下:

- 1. 关弧压开关;
- 2. 关闭调高器(M39);
- 3. 割枪上升(M70)。

M50 穿孔动作:

- 1. 割枪上升(M72),等离子操作时无此动作;
- 2. 开切割氧(M12),等离子引弧开, 检测"弧压成功"信号;
- 3. 割枪下降(M73),等离子操作时无此动作;
- 4. 开调高器(M38)。

火焰数控系统操作说明书

- M52 点火固定循环:操作顺序:开燃气(乙炔)阀(M10),开高压点火(M20),延时点火延时,关高压点火(M21)。
- M70 割枪升固定循环:用在程序开始,和一段切割程序结束后,将割枪抬起,以便割枪快速移 动到下一个切割位置。

操作顺序:开割枪升开关(M14) 延时割枪升延时,(见 6.3 火焰参数)关割枪升开关,(M15)。

M71 割枪降固定循环: 用在穿孔前, 作用与 M70 相反, 但数值稍小一点, 因为重力的作用, 下比上要快点。

操作顺序:开割枪降开关(M16) 延时割枪降延时,(见 6.3 火焰参数) 关割枪降开关,(M17)。

- M72 穿孔割枪升循环:用在预热结束后,将割枪有限抬起,避免在开切割氧时,飞溅的钢渣 堵住割枪的口。
- 操作顺序:开割枪升开关(M14),延时穿孔割枪升延时(见 6.3 火焰参数),关割枪升开关(M15)。
- M73 穿孔割枪降循环:用在预热结束后,执行完 M72,开切割氧后,将割枪放到切割位置,是 M72 的反动作,但数值稍小一点,因为重力的作用,下比上要快点。
- 操作顺序:开割枪降开关(M16)延时穿孔割枪降延时,(见 6.3 火焰参数)关割枪降开关,(M17)。 M75 割枪定位延时:等离子抢定位时,先割枪下降(M16),当碰到下限位时(见输入口8 XXW),
 - 割枪下降停(M17)。然后,割枪上升开(M14),经过割枪定位延时(参
 - 见6.4 等离子参数),后,割枪上升停(M15);
- M80 总关:执行 M80 后所有的输出口将被关闭。

第六章 参数设置

在工作主菜单下按【F3】,系统进入参数设置功能,菜单如下图:

「速度「系统「火焰」离子「控制」存储」

图6.1 参数设置功能菜单

其中各功能项分别存储以下参数:

速度参数 ---- 各轴起动速度,调整时间,最高限速;
系统参数 ---- 各轴电子齿轮,机床原点,参考点,反向间隙补偿,画线偏置,软件正/负限位;
火焰切割参数 ---- 各轴电子齿轮,机床原点,参考点,反向间隙补偿,画线偏置,软件正/负限位;
火焰切割参数 ---- 点火延时,预热延时,割枪升延时,割枪降延时,穿孔割枪升,穿孔割枪升参数;
等离子参数 ---- 割枪定位延时,起弧用 M 指令,断弧用 M 指令,弧压检测选择;
控制参数 ---- 火焰/等离子方式选择,加工限速,外延穿孔选择,图型范围。
存储功能 ----- 将修改后的参数存入参数区。
注意:选择以上各项参数时,若使修改有效,都需单独存储,即按【F6】存储。
输入 "1928 "口令后,系统提示:
注意:设置出厂参数
此时,对参数的修改都将存储到出厂设置参数,和当前用户参数中。否则,只对当前用户参数修改有效。

6.1 速度参数

在参数设置子菜单中选择【F1】键,进入速度参数设置功能,如下图

图6.2 速度参数设置菜单

速度参数包括:

- 1. 起动速度——系统X, Y轴起动和停止时的速度(单位:毫米/分);
- 2. 调整时间——系统由起动速度到最高限速(整个调速过程)所需的时间,单位:秒
- 3. 最高限速——手动和执行G00指令运行时的最高速度。

6.2 系统参数

在参数设置子菜单中选择【F2】键,进入系统参数设置功能,如下图

齿轮分子	X: 0002	Y: 0002
齿轮分母	X: 0001	Y: 0001
	X: -0010.00	Y: 00010.00
	X: 00000.00	Y: 00000. 00
反向间隙	X: 00000.00	Y: 00000. 00
画线偏置	X: 00000.00	Y: 00000. 00
软正限位	X: 09000.00	Y: 09000.00
软负限位	X: -9000.00	Y: -9000.00
「速度」	系统「火焰」副	寄子 控制 存储

图6.3 系统参数设置菜单

1. **电子齿轮分子/分** ----- 电子齿轮分子和分母的比值就是脉冲当量*1000。例:系统脉冲当量是 0.008毫米,其电子齿轮分子/分母=8/1

电子齿轮比计算公式N/M = 丝杠螺距*1000/(360*细分数/步距角*传动比)

2. **机床原点** ----- 使用接进开关设置的机床上的一个特殊点,机床不设定机械原点时,可将机床原点 设定为零。

3. 参考点----- 被定义为程序加工起点, 系统运行程序时(G92)会自动产生。

4. **反向间隙** ----- 由于机械有反向间隙,系统在换向时将对间隙进行补偿。间隙值是通过实际测量得 到的,单位:毫米;

5. 画线枪偏置 ---- 画线枪与割枪的轴向的偏置值;

6. **软件正/负限位---** 当程序坐标超过设定的软正负限位值时,系统报警,如果不使用时,应将参数设定 大于实际使用值。

6.3 火焰参数

在参数设置子菜单中选择【F3】键进入火焰参数设置,如下图

点火延时 预热升延时 割枪降延时 穿孔割枪降 穿孔延时	000.50 005.00 002.00 001.00 001.00 000.00 000.00
	↓ <mark>火窗</mark> 「离子「控制」存储」

图6.4 火焰参数设置菜单

点火延时-----火焰切割时,当执行M20时,打开高压点火开关时的延时时间;
 等离子切割,打开弧压时延时时间;

2. 预热延时-----穿孔预热的时间(单位秒),在穿孔预热时,开始预热延时,如果预热时间不够,可按 【暂停】键,预热延时自动延长为 150 秒,如果预热已好,可按【启动】键,结束预热延时,并将预热时 间自动保存在预热延时参数中;

3. 割枪升延时-----执行M70指令时的延时时间(参见5.4 M指令),单位:秒;

4. 割枪降延时-----执行M71指令时的延时时间(参见5.4 M指令),单位:秒;

5. 穿孔割枪升-----执行M72指令时的延时时间(参见5.4 M指令),单位:秒;

6. 穿孔割枪降-----执行M73指令时的延时时间(参见5.4 M指令),单位:秒;

7. 穿孔延时 -----火焰切割穿孔执行M07时,打开切割氧延时后割枪下降。

6.4等离子参数

在参数设置子菜单中选择【F4】键进入等离子参数设置,如下图

点火延时	000.50
预热延时	005.00
割枪升延时	002.00
割枪降延时	001.00
穿孔割枪升	001.00
穿孔割枪降	000.00
穿孔延时	000.00
to a second second second	
速度 系线	充「火焰」离子「控制」存储

图6.5 火焰参数设置菜单

1. 割枪定位延时-----等离子抢定位时,先割枪下降,当碰到下限位时(见输入口8 XXW),割枪下降停。

- 然后,割枪上升开,经过割枪定位延时后,割枪上升停(参见5.4 M75指令),单位:秒;
- 2. 起弧用M指令-----设置起弧输出口,缺省是M12;

3. 断弧用M指令-----设置断弧输出口,缺省是M13;

注意:当断弧的M指令比起弧的M指令大一时,说明他们是一个输出口(偶数为开,加一为关),此时系统控制起弧开关使用电平控制;而当两个M指令均为偶数,且不相等时,说明是两个输出口,分别控制开和关操作。此时系统控制起弧开关使用脉冲控制,脉宽0.5秒;

4. **弧压检测选择-----在等离子操作时,是否检测弧压,由此位定。选检测弧压时(选1)**,起弧时要检测 弧压反馈,运行时要监视弧压反馈。当弧压反馈断掉时,系统按暂停处理,并有提示。一般对厚板加工选 择弧压检测。不选择弧压检测时(选0),起弧开关打开后,延时点火延时(见参数设置一火焰参数)后 开始加工,切割过程中,不检测弧压反馈。一般对薄板加工不选择弧压检测。

5. 定位检测选择-----在执行M07指令时,选择是否进行割枪定位操作。

6. 定位检测逻辑-----割枪定位延时,选择下限位的测试逻辑,0为低有效(常开接法);1为高有效(常闭接法)

7. 穿孔延时-----当起弧成功以后, 经穿孔延时后系统正常切割运行。

6.5 控制参数

在参数设置子菜单中选择【F5】进入控制参数设置,如下图

火焰/等离子选择	00		
加工限速	01000		
边缘穿孔选择	00		
不预处理图形	00		
图形最大值	X: 01000		01000
图形最小值	X: -0100	Y =	-0100
共边XZ: 0/YZ: 1	00		
速度转换角	045.00		
注意: 0-不选择	▶ 1-选择		
「速度「系统」火火	aⅠ离子Ⅰ <mark>整</mark>	劇「	存储

图6.6 系统控制参数设置菜单

- 1. 火焰/等离子选择——选择火焰加工取0,等离子加工取1;
- 2. 加工限速一一 火焰/等离子切割过程中的最高加工速度;
- 3. 边缘穿孔选择—— 0表示不选择边缘穿孔, 1 表示选择边缘穿孔;
- 4. 不预处理图形 —— 一般加工都是先处理程序,测算加工图形的最大/最小值。但当程序巨大时,
- 这样处理的时间过长,可选择不预处理图形,事先设置图形最大值/最小值(见下参数)即可;
- 5. 图形最大/最小值—— 图形显示的范围; 6.选择驱动电机共边——0为X、Z轴共边; 1为Y、Z轴共边。
- 7. 其余参数系统使用, 一般不要修改.

第七章 诊断菜单功能

在系统工作主菜单下按【F4】键进入系统诊断功能,见下图

输出: M38 M12 M14 M16 M10 M20 M22 M24 0 0 0 0 0 0 0 0 0 M32 M34 M36 M10 M40 M42 M44 M46 0 0 0 0 0 0 0 0 0 0 M32 +<W W<- DUP DDN DLZ ST0 PAS LDW 1 1 1 1 1 1 1 1 1 SX+ SX- SY+ SY- SP+ SP- SX0 SY0 0 0 0 0 0 0 0 0 0 117 118 I19 120 121 122 123 124 1 1 1 1 1 1 1 1 1

图 7.1 诊断功能菜单

系统诊断显示当前系统开放的硬件资源,在系统诊断画面下,可以检查输入输出接口状态。

- 1. 输出检查: 光标移动到16点光电隔离输出的任意位置,用"0"和"1"改变输出0和1电平状态。1表示 置位,0表示取消。其输出各端口定义见(9.3输入输出端口定义)
- 2. 输入检查:显示当前16点光电隔离输入的状态。1表示置位,0表示该端口无置位。其输入各端口符号 定义见(9.3输入输出端口定义)

第八章 图库

8.1 零件选取

在主菜单下选择 F5 进入图库。

目前提供了 27 个图形单元(可扩充) 按方向键科移动高亮光标、,选择需要的图形, 【PgUp】 【PgDn】按和 可上下翻页。选中后按 Enter 键。

8.2 零件的设置和排料

当选中相应零件后出如下画面,右上部提示输入图形的各种参数。

图 8.1 图形设置菜单

【F1】工件:按工件加工(要里面)
【F2】孔形:按孔形加工表示要要外面
【F3】系统提示输入旋转角度、按【F6】提交后,显示旋转后的图形,角度逆时针为正。
【F4】排料:系统提示输入
行数—排列加工件行数。
列数—排列加工件行数。
列数—排列加工件列数。
行间距—行与行之间的距离
列间距—加工件橫向间距
行偏移量—隔行错位的偏移量
见如下示意图;

图 8.2 排料示意图

【F6】提交: 将参数选择好后, 选此键生成加工程序

注意: 在零件示意图中有一个+光标, 该点是初始割枪定位的位置。

第九章 系统外部连接

9.1 限位 / 启动 / 暂停等信号输入

一般限位/启动/暂停等使用机械开关,为防止干扰的进入,通常使用机械开关的常闭触点,按照下图 方式连接。

注意:系统要求急停,启动,暂停,限位的逻辑是一致的,即都接常开点或都接常闭点(常用)。系统开机后自动检测启动位的状态,做为控制依据。因此,如果未接外接启动开关时,则相应的启动位应接到 24V 地(类似接常闭触点)或什么都不接(类似接常开触点)。

9.2 外部输出接口

说明: 控制信号 = 0 开关/继电器 接通(+24V 形成回路,低有效,信号发出) 控制信号 = 1 开关/继电器 断开(+24V 未形成回路,信号撤消)

信号定义	25芯插座(孔)	说明
>W+	1	X/Y+限位,两个轴正限位串接,高有效.如果不使用,请将信号短接到
		24V地
W-<	14	
		调宣由机控制升开关 平时接受闭占 升时轴占断开
DUP	2	调查由机控制改工子 亚时接受闭方 欧时轴方斯工
DDN	15	· · · · · · · · · · · · · · · · · · ·
DLZ	3	<u>纵压位测,低有效,弧压木按理时</u> 为高
STO	16	外部急停键,局有效,如果不使用,请将信亏短接到24V地
DAU	10	外部暂停键,局有效,如果个使用,请将信号短接到24V地
VVW	17	等离子割枪定位时,卜限位
AAW		OH1燃气/调高/拐角信号继电器隔离常开触点输出
	5	OH2高氧/起弧信号继电器隔离常开触点输出
	18	COM(OH1/OH2/OH3/OH4)隔离输出的公共端
	6	电机 (OH4) 降常开
	19	电机 (OH3) 升常开
1	7	电机 (OH4) 降常闭
	20	电机 (OH3) 升常闭
	8	火焰时·M38调高控制 M38开、M39关
	21	<u> </u>
		MOD(耳) MO1(光) 业松描式时 田工占小工光, 空肉子描式时 当占
M10/M11		
或M38/M39		大姓时为时,加兴为开(顺为大炮/夺离子功能切换开大)
M20/M21	9	▲ 角田
	5	
		汚角(UHI) 吊 加 肥 点
M22/M23	22	切割氧(OH2)常闭触点
M24/M25	10	+24V/1A电源
	23	+24V/1A电源
	11	24V电源地
0.41	24	24V电源地
24V	12	
24V	25	
24V地	13	
24V地		

λ検山岸口空ツ ŧΑ

9.4 外部电机驱动器接口

驱动器信号接口定义:

信亏正义I3 心佃/	坐(キリ)			
XDIR+1	8			
XDIR-9				
XCP+2				
XCP-10				
YDIR+3	3			
YDIR-11				
YCP+4	15			
<u>YCP-12</u>	C			
ZDIR+5				
ZDIR-13				
ZCP+6	40			
ZCP-14				
7电	原 +5V			
5V 电源 地8、15				

图 9。2-1 有源接法示意图

升降电机/升降限位

图 9。3 限位接法示意图

D- -

D+ ·

图 9。2-2 无源接法示意图

注; 1、ARM 后面板各个部件说明如上图所标注 。 2、系统输出分两种接法: 一种是有源接法(利用系统后面提供的继电器) 如上图 4.2-1 直接接电磁阀继电器等感性负载; 第二种是无源接法(利 用系统后面提供的 25 芯孔)只有两路。如图 8.2-2 所示

3、割枪升降接线示意图如图 8.3 、图 8.4。如割枪升降没有限位的情况下, 要把图 8.3 中 Com、上限位、下限位短接。图 4.4 (割枪升降电机接线示意图)

SH-2002AH 升级软件操作说明

功能:

通过 U 盘实现程序升级。

操作步骤:

1. 将升级文件拷入 U 盘中,注意升级文件的名称只能为 STARTCNC.EXE

2.同时按住"启动"键和"停止"键(即系统上的红色和绿色按钮)给系统上电,上电出现 升级界面后把手松开。插入 U 盘后,按 F1(即升级),系统会自动执行升级操作。

3. 结束

当 Flash 擦除和编程操作完成后,若操作成功,则会显示"升级成功".并且喇叭会响一声. 若操作失败,则会显示"升级失败",并且喇叭会不停的响报警。

4. 关断电源, 拔出 U 盘, 重新打开电源即可启动更新后的程序。

注意:

1.用于升级的 STARTCNC.EXE 文件不能大于 240k。

2.升级不成功的原因大多是 U 盘引起的,升级过程中,系统会有一步步的显示,如果没有 U 盘的操作过程,而直接回到升级主界面,可考虑是否是名字错误或 U 盘有误。

3.系统升级完以后,进入系统自动界面手动打开"预热氧"如出现"暂停"需把系统从新 上电,开机后按 [F 3]进入参数主界面,进入后按数字键 [1] [9] [2] [8] 会出 现"设置出厂参数"然后进入 [F 3]火焰在按 [F 6]存储。

附录 2

安装尺寸说明

佛山市奥焊机械科技有限公司

★全国统一服务电话: 400-800-4427

★ 生产基地(工厂制造部) 广东省佛山市南海区里水镇和顺金逢大道 36 号

★ 营业中心(门市销售部) 广东省佛山市南海区黄岐广东国际五金城会展中心 2-36 号

邮纵	帚: 528248	
电话:	0757-89372700	020-89372700
传真:	0757-89372700	020-89372700
邮箱:	<u>fsauhun@163.com</u>	<u>121777601@qq.com</u>
网址:	www.auhun.com	www.aoweld.com
	www.auhuna.com	www.auhunb.com

31